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SUMMARY

Consider a population consisting of units or individuals and two

treatments. In principle or potentially, with every individual are associated
responses y and Y’ under the first and second treatment respectively.
In practice, however, each individual can receive only one of the two
treatments. Suppose one is given responses for a sample of individuals
drawn from the population and treated with one treatment, as well as
responses from another sample treated with the other treatment. From these
sampled responses, one is supposed to estimate an average response
difference over the entire population.
. The sampling design may be known fully or partially. Such a fram;work
is often used to investigate the measurement of causal effects in randomized
experiments or observational studies. These investigations have provided
deep philosophical insight into the problem of causation. Yet, by restricting
themselves generally to finding an unbiased estimate of ‘causal effect’, they
have mostly ignored the problem of ‘optimal estimation’. In contrast, in
our paper, although we do not discuss causation itself, we investigate -
‘optimal estimation’ of quantities which may represent departures from
hypotheses of ‘no effect’. In Section 9, we particularly emphasize how
optimality considerations are tied to the concept of ‘nonconfounding’ which
is so basic for. most causal theories. - i
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1. Introduction

A current view among some thinkers, particularly theoretical physicists
(Bell (1)), is that reality is ‘acausal’. Whatever is the ontological significance
of cause-effect concepts, they are an integral part of our epistemology.
Traditionally ‘causation’ has played an important role in all scientific
development. The idea of ‘manipulability of cause’ seems essential for most
scientific investigations. These investigations, it can however be argued, could
also be carried out by restricting ourselves simply to . situations of
unconfounded association. Here, unconfoundedness is with reference to all
known factors, and is thus ‘provisional’; subsequent knowledge of new factors
can change the situation. Such a performatory viewpoint of causation enables
one to get around a very deep and often frustrating questions: What is a cause?



22 JOURNAL OF THE.INDIAN SOCIETY OF AGRIC ULTURAL STATISTICS

Even if a cause is identified only up to an unconfounded association, it can
be practically: fruitful to measure or estimate the ‘causal effect’. In this paper
a model is provided which assumes a causal framework to estimate ‘causal
effects’ in the sense just mentioned. The context is a population consisting of
units/individuals and the existence of two treatments such that with every
individual are associated responses y and y” under the first and second treatment
respectively. We'are given responses for a sample drawn from the population
and treated with one treatment, as well as responses from another sample treated
with the other treatment.

In this paper causation per se.is not discussed. However, the bearing of
such related concepts as covariate sufficiency (Stone [20]), randomization
(Fisher ([5], [7])) unconfounded association (Cox [4]), ignorable treatment
assignment (Rosenbaum and Rubin [17]) etc. on our model is explained in the
paper. A generally useful reference is Holland [13].

We begin by making the model precise, and in Section 2 discuss several
ways of expressing a null hypothesis of ‘no effect’. Each of these is associated
with a population or superpopulation quantity or quantities which may represent
departures. from the null hypothesis. The purpose of the rest of the paper is
to discuss optimal estimation of these quantities, using the theory of estimating
functions. ' ‘ :

Our model concerns a finite population of N units or individuals i, denoted
by P={i:i=1,...,N). From the subsequent discussion it will be clear that
the knowledge of the size of the population I?1=N is not always essential.

Suppose that there are two treatments, T and T". Denote by y; the response

value which would be associated with unit i if it were given treatment T, and
by y} the response value which would arise from treatment T'.

In our framework imagine a treatment to have been assigned, though not
necessarily administered, to every unit in the population. Let z; =1 if individual

i is assigned treatment T and z;=0 if it is assigned treatment T’. The assignment
is summarized in the treatment vector z2=(zy, ..., z\).

Further, suppose there is a covariate x, with value x; for unit i, and let
x=(x,..., xy) denote the array of x values for the population. Assume a
semiparametric superpopulation model, as follows

(1) conditional on x, the variates (yi, yihi=1,..., N are independent;

(i) E(y;1x)=0(x) and E (y/; 1 x) = 0" (x,);

(i) Var(y;1x)=v (x;), Var (', Ix) = v’ (x;) and Cov (y;, y; I x) = (x,).
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The above model clearly satisfies, at the level of first and second order
moments, the following conditions often mentioned in relation to causal
inference. ‘(1) Non-interaction between units’ (Cox [3],”Kempthorne [14],
Rubin [18]): the joint distributions of y;, y’; given X depend ‘exclusively on the
specified unit i and the specified treatment. (2) Covariate sufficiency and the
implied nonconfounding (Stone [20]): For any two units i, and i, with covariates
X;, = Xi s the joint distributions of (yi], y’il) and (yiz, y’iz) given x are the same.
That is, the joint distributions conditional on x are not affected by any unknown
factors.

To complete the model, it is necessary to make assumptions about the
treatment assignment z. Assume the treatment assignment to be ignorable, in
thie sense of giving no information about the y and y’ values for the population,
as follows. ' o : S

Assumption : Given x, the treatment assignment vector z and the response -
values {y,y’;:i=1,...,N} are independent. :

For a detailed discussion of the ignorability assumption, particularly in .
relation to ideas of ‘causation’, refer to Rosenbaum and Rubin {171 and
Stone [20]. This assumption is consistent with our formulation, in which we
have in fact defined (y;, y’;) as existing before z;. It also plays a central role
in the construction of our estimating functions for the superpopulation
parameters, as in (10) of Section 3. It is satisfied in randomized experiments
(Fisher [7], Sprott and Farewell [19]) but generally cannot be more than a
hopeful assumption in observational studies. We will discuss in Section 9 the
extent to which the ignorability assumption can be relaxed for- estimation of
finite population quantities, particularly A of Section 2.

The values z,i=1,..., N are now thought of as random variates_. The
probability that individual i receives treatment T is called its propensity, and
is denoted by «;:

(Xi=P(Zi=1|x) (1)

Thus 1 - o; =P (z;=01x), and assume 0 < o; <1 for all i. Do not assume that
the z; are independent of each other unless it is said so specifically.

In a controlled experiment, the o; are known and under the control of
the experimenter. In an observational study, the o; are typically unknown, and

uncontrollable. With this latter context in mind, in the case where x defines
strata we do not assume the «; to be constant within strata.
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2. Hypotheses of No Effect

In testing for treatment dlfferences there are 'several possible ways of
formulating a. hypothesis of “no effect”. The sxmplest and most direct is
Fisher’s [6] formulation :

Hl: y,=y/, foralli

Without further assumptions, the full strength of this hypothesis cannot be tested
because for any unit i only one of Y;» ¥'i is observed. A weaker and more easily

tested hypothesis, which might be called “no effect in expectatxon would -be
* written as

H2: 6()=0'() '
implying 8 (x;) = 0’ (x;) for all i. Another kind of weakening gives the hypothesis
of “no effect on average over the populatjon" :

H3:A =— E (;i-y;)=0
with superpopulation counterpart
1 N
_ﬁ 2 0(x;)~6"(x))=0

In these latter hypotheses, “= 0” might more meamngfully be replaced by “i
negligibly small”, A

We will confine attention mainly to hypotheses H2, H3 and H4 in what’
follows. However, -under some models for potential departures from the null
hypothesis, we might want to replace H3 by “no effect on average” in another
sense, such as

N
H3: 3 a;(y;-y)=0

i=1

for constants a; >0 or

N N
H3": z'yi/Zy’i=1

i=1 i=1

See Sections 4 and 5 for further discussion of these.
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There are three important special conditions which allow the testing of
hypothesis H2. The first, the stratification case, occurs when the value of x
stratify the population into strata of reasonably large sizes :

2= {irx=x), j=1 ..k
In that case, if §;=6 ), 0=9 (x), H2 becomes
H2,:6;=0%j=1,.. .k
The second, the regression case, has
8 (x)=0f(xp), & (x)=6" f(x;)
where f is a known function. Here H2 becomes
H2, ., : 6=6
The third is a constant difference assumption, that
8()=0"()+Y
for some constant y. In that case; H2 is equivalent to
H2,4: 1=0
These three special cases will be considered in Sections 3, 4and 5
respectively.

It is important to emphasize that the superpopulation given by (i) - (iii)
of Section 1 is hypothetical, in contrast to actual survey or experimental
population 2. In observational studies, such as epidemiological studies, the
survey population is in many cases left to the imagination and interpretation
of the investigator. However in our setup the superpopulation and the
experimental population are clearly distinguished.

Now in relation to the survey population ? we define a sampling design

d=(S,p) @

_where S={s:sc P}, and p is a probability distribution on S. Following the
general terminology of survey sampling, s is called a ‘sample’. In the conduct
of a survey, a sample s is drawn using the sampling design d. For every
individual i, the probability of its being included in the sample drawn is denoted
by «;:

m=P(s3i),i=1,...N 3)
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Assume the sampling design d in (2) to be such that all inclusion
probabilities m; are positive. Here it is important to distinguish the inclusion
probabilities m; in (3) from the propensities @; in (1); the former are assumed
to' be under the control of the investigator while the latter need not be. Allow
the possibility that m; may depend on the z values, i.e. on the treatment

allocations, as in the example of Section 7.

After the sample s is drawn, each individual i € s is seen to be given
the treatment T or T’ according as z;=10r0; the corresponding response Y;

or y’; is observed. Thus we can denote the survey data as

G,y):ies _ (4)

where

Yi=lz (y;iz), {y; (1 -2) }, x ] &)

We note there are thneé sources of stochastic variation in the data, namely the

superpopulation model for the y; and y’;, the generation of the treatment
assignments z;, and the sampling design producing s.

The problems of estimation which address the testiﬁg of the hypotheses

H2 - H4 can now be stated as follows. Given the data in (4), the sampling

design d in (2) and the superpopulation model in (i) - (iii) and (1), to test H2
we would want to estimate

0;and 0, j=1,...,k - , 6)

in the stratification case, 0 and ' or perhaps 6 -6’ or 6/ 6’ in the regression
case, and y in the constant difference case. In testing the hypothesis H3 we
would want to estimate : ’ :

N - .
A=Y (i-y)/N ™
i=1
Testing H4 in the stratification case would mean estimating
K
. j=1
3. Estimating Functions : Stratification Case

First consider the case where x stratifies the population. To estimate the
2k parameters of interest for H2, namely 9;, 8,j=1,...,k of the
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superpopulation model, -the followmg are the elemcntary esumatmg functions.
Forie &, define

y; — Y.~ - :
¢i = —-!a—l z; (p'i = t&"l (1 —'Zi)’ J= 1,..,k (9)

’ Usmg the assumptnons of Section 1, we have

E(¢;lz,x)=E (¢} |z, )—0

i=1,...,N, and the functions are all orthogonal for fixed x, unconditionally

" or conditionally on z. Clearly one could also define as elementary estimating

functions, the functions of (9) with the denominators a; and 1 —; omitted.

However, their inclusion will be convenient for the development at the end of
this section, since the expectation of ¢; holding y, y fixed is simply

(vi = 8)). |
If hYpothetic’ally the variates y; in (5) were known for all the individuals
in the population ®, the population based optimal estimating functions
conditional on z,x would be given by

o = i E{(30/38)zx) E{(3¢,/36,)z,x)

! ' E@lnx) R X CCRER'Y

i=1

Y [ E(Q4/20)nx) E((a¢’i/ae’j)|z,k)}

’

gi= 2 E (¢?12,x) vi E{@;) 12X}

j=1,...,k (Godambe and Thompson [12}). Similar expressions are obtainable
for optimal estimating functions conditional on x only. It is easy to see that
in either case the equations g;=0,g’;=0 are equivalent to

Y 3i-8)z=0, Y (v;-0)1-2)=0 (10)

ne?j : le?j

yielding as the population based estimates for 6; and ¢'; the corresponding means

of the y and y’ values. It is mterestmg to note that these estimates and the

opUmal estimating equauons (10), being optimal conditionally on (z, x), as well
as on x, are independent of the propensities o; in (1).

Now for the sampling design d in (2),'the optimal estimating equations
for the parameters 6;, e',.; based on the survey data (4), are obtained from (10)
as '
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Z((Yi_ej)zi/ni)zo» Y ((Y’i—é’j') (1-z)/m}=0 (11)
igsj . iesj

where: s;=s N ®,j=1,...,k and m,i=1,...,N are the inclusion

probabilities in (3) (Godambe and Thompson [11]). From (11) we get the
estimates :

J. s[ 2yl J/[Ezi/"i}

IESj IESj

D>

x
s

A'=lz y’i(l—Zi)/nil/[Z(I;Zi)/ni (12)
iesj iESj.

j= 1,...,k. Note that because of their relationship with (10) the estimating
equations (11) and the estimates in (12) are independent of the propensities
o; in (1). However, they do depend on the design inclusion probabilities ;
given by (3). For a sampling design with inclusion probabilities w; constant in
each stratum,

m=nPie®j=1,... .k (13)

the estimates éj and @’j reduce to the samplé means

Rty

)

i€s. ies.
EJ ]

v, =Y yia —zi)/[z a —zi)’ (14)

Among the sampling designs "which satis'fy‘ condition (13) simple randomn
sampling and stratified random sampling are obviously included.

The inclusion of design weights 1/m; in (11) relates those equations to

equations (10). If renders the estimation based on (11) “robust” against some
departures from the assumed model (i) - (iii) in the following sense: even if
the solution of (10) fail to have meaning in terms of the superpopulation, the
solution of (11) will estimate them as finite population parameters (Godambe
and Thompson [11]). However, if this robustness is not required we might ignore
the design weights and use the estimation given by (14).
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Turning now to H4, according to criteria of estimating function theory
(Godambe and Thompson ([11], [12])) the optimal estimation for the
superpopulation parameter © in (8) is given by the estimate

k
A A A,
=Y N;§;-8)/N (15)
i=1 ‘
A ’ A .
where ej and G’j are as in (12).-
Finally we set out to estimate the finite population parameter relevant to

H3, namely A of (7), in a manner “assisted” by the e_stimation of the
superpopulation parameters. In this direction, construct a function

N .

H=Y (6;,-07)/N (16)
i=1 :

where ¢; and ¢} are the same as in (9). The superpopulation expectation of H

conditional on y;, y;,i=1,..., N is given by

EMHly,y;:i=1,....,N;x)=A-0 an

where A and © are as in (7) and (8). Under suitable conditions for a generalized
law of large numbers, for large N the right hand side of (17) is approximated
by the function H in (16) :

H=4A-0 ' (18)
These relationships have a special significance in the context of our estimation

problem. Under the superpopulation model of Section 1, for amy fixed
9; 9'j, j=1,...,k and thg sampling design in (2), the optimal estimate of H

based on the survey data (4) is given by

A -]
H={(Y @-¢;)/m)N (19)
ies
where w;,i=1,...,N are the design inclusig\n probabilities in (3) (Godambe

and Thompson [11]). Note that the estimate H does depend essentially on the
propensities @; in (1). .

The required estimate of the finite population parameter A in (7) can be
achieved in two steps :

A
1. Hin (16) is replaced by H in (19).
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2, e 0’ pi=1,...,kare replaced by their opnmal estimates gnven by
(12) or (14) 1f appropnate

Thus the parameter A is estimated approximately optimally because of (17)
and (18) by

3:?1( b, ')+é (0)

A
where © is as in (15) and

N (4i-8)z) (;-&)a-z) |
HE.8) = z Z[ '(m(;i) - (ﬂ:i(lj—ai)) :,/N (,21)

j=1 IES

It is easy to see that if the propensity a; depends exclusively on the covariate
‘xpi=1,...,N, then because of (12)

R .
H(8,6)=0
A

in (20), and the estimate A would then reduce to

kN-

DERCECNS (22)

i=1
which is‘independent of the ;. The estimate (22) for a' simple random sampling
design is equivalent to '

k
N
.Z N 5~ _ @3

where yj and ?’J are given by (14). This is a kind of post-sampling stratification.
If the stratum proporuons N /N are not known but the sample size is large,
we might replace N;/N in (23) by appropriate estimates.

The foregoing arguments supporting the use of the estimate H in (19)
for A- @ in (17) also ‘support, for each stratum %, the use of the estimate

Z (¢l / ni) for 2 (y‘ - GJ ) ‘ (24)

nesj IEPJ.

and the estimate

Y @im for (Y (-8

IESj IE?j

‘
\
s
i




OPTIMAL ESTIMATION IN A CAUSAL FRAMEWORK 31

assuming |®| is large. Now under the superpopulation model, based on
complete observatxon of (y;, Yy}, i€ %, the two expression {-} in (24) are
optimal estimating functions for 6; aud o; respecnvely This fact suggests that

sample based estimates (8, 8),. altemauve o @, 6’) discussed above, could
be obtained by solving the equatxons {Z;¢ : (¢,/1t )Y =0 and

(z,Es(¢ /1:))9,—01—1 ,K. Note nmow that in (19), g, ) is

automancaﬂy 0, and an estimate of A is obtained from (22) directly by replacing
in it 8,8 by (8,8):

=[2yizi/aini]/[22/anJ 25)

iesj ies

i€s, iesj

[2 Y (l—z)/(l o), ] / l Z(l—zi)/(l—ai)ni]

j=1,....k

* Thus applying the prmcnples of estimating function theory in different
orders may yield different results in this context. Three points are to be
" emphasized here. (i) Regardless of the condition that propensities «; are

functions of the covariates x;, we ‘have H(g,9)= 0 whn]e as noted in the

preceding paragraph, that condition is necessary for H (e (-)) 0. The estimate
of A based on (25) is thus simpler in genera] than the one in (20). (ii) However,
unlike the estimates (@, 8’ ), the estimates (9 6') are free from deperdence on
the propensities q;, as seems fitting under the 1gnorab111tx aAssumpnon (iii) Also,

conditional on z, x the estimating functions leading to (6, 8") are optimal, while
those leading to (8,8") are not.

A We now elaborate briefly on the approxunate opumahty of the estimate
A in (20). For any fixed 9 0 ,j = 1,...,k the estimate H in (19) is ‘optimal’

for H in (16), in the sense of its havmg minimum expected variance in the
class of all unbiased estimates of H. Here, ‘unbiasedness’ and ‘variance’ are
with respect to the sampling design (2), and the Aexpectation’ is with respect
to the superpopulation model. The estimate A is arrived at using two
approximations to the just stated exact ‘optimality’. The first approximation
(18) is derived from (17) with a law of large numbers. The second approximation
consists in replacing 6; and 0’ i j=1,...,k by their estimates in A —©. This

second step is justiﬁed as follows. Let
A
g=A-06-H
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Given (6, 6) the estimate of A is obtained by solving-the estimating equation
g = 0. Now if E denotes the expectation with respect to the sampling design
d in (2), and E as before the superpopulation expectation, then
EE(gly, y;:i=1,...,N;x)=0. Further since

(ag/ae)——N + ZA{z;/(o5m))
ie S
EE { (og/ aej) }=0. Similarly E E {(dg/ 893 )} = 0. Actually for many sampling
designs, including simple random sampling and stratified random sampling with
sufficiently large N; and n ;, the quantities (ag/ae) and (dg/ 89') j=1,..,k

would themselves be close to zero. This 1mphes (Godambe, [9]) that
asymptotically the efficiencies of the estimating function g, and the one obtamed
from g by replacing 6 and 6’ by their estimates, will be nearly the same.

4. Estimating Function : Regression Case
In this section we suppose it is reasonable to assume
0 (x]) =0f (Xi), e’ (xl) =0'f (xl) (26)

i=1,...,N, where 6,0 are unknown parameters, and f is a completely
specified function. In the context of the previous section, this would reduce
the number of unknown parameters to be estimated from 2k to 2.

- In general, the population based optimal estimating equations for 8 and
8’ are given by _
N, .
f(x;)
Z (y;-8£(x) > Z -0 f(x) Y5 (1-2) = 0
N - v (x;)
(27)
where v and v’ are the model variance functions defined in (iii) of Section 1.
Further, the sample based optimum estimating equations are given by

f(x) z;
Es{y. 8f(x) ) - Yoo O
i f(Xi)(l‘-‘Zi)
Z {y;-9 f(xi))Ti)ni= (28)

ies
As in the case of (10) and (11), the optimality of (27) and (28) is both
unconditional and conditional on z, the value of x being fixed in both cases.
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 Note that unlike the equations (10) and (11), equations (27) and (28)
depend essentially on the variance functions v and v’. Thus their applicability
is restricted to situations where these are known up to proportionality constants.

Here égain‘, as in the previous section, the propensities @; do not.appear
in the optimal estimating equations for superpopulation parameters. If estimating
9,0’ is the only objective, the assumption of Section 1 that
1>ai>0,i=1,...,N may be dropped. In some situations where the -
propensities «; are under the control of the experimenter, it might seem
reasonable .to have o, =1 when f(x;)>c and ;=0 otherwise, c being a
specified constant. (Robbins and Zhang [16], Godambe and Kunte {10]). These
are situations where the experimenter is sure a priori that one treatment is at
least as good as the other, but does not know how much better it is. The results
from this “biased allocation” scheme yield optimal estimation through (28).

The hypothesis H2 (or H2z) can be tested through the estimation of

$=0/0" It is interesting to consider the case of an independent Poisson model,
where if y; y’; were observed for all i, the optimal population estimating

equations for 6,6’ would be

N : g N
T (y-0f&)Yy =0, X (y;-0 1)} =0

ti=1 . i i=1

The implied population e’stimaté for § is a solution of the estimating equation

. N ,

K@) =Y, (y;-8yp=0 (29)
i=1 ' '
. o N N

~ Then k(&) is an analogue of A — © of Section 3, and 2 y;/ 2 y; of hypothesis

i=1 =1

H3" is an analogue of A. If one defines

N
- ; a-2)
K=K(y1,...,yN;8)=Z[<yi—ef(xi))%-swq—e'f(xi)> - ]

1-a.
i=1 %

(30
then analogously to (17) we have

EKly, Yy i=1,...,N,x)=Kk()
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The optimal estimate of K is

a- Zj)

T (1 —a,-) (31)

Zi .
2A%-060)) ———5 3 (y,~0'f(x))
- o S
1€58 . 1ES
Suppose we are in the special unbiased allocation céi_se 'where"population
units are paired so that- f(x;)/ m; is constant within each pair, and T and T’
are assigned at random within each pair. Then (31) reduces to

Zyi/ni—SEy';/n.- | (32)
T T . _

where Z; and Zp’ are sums over sampled units receiving treatments T and
T’ respectively. The estimating function 32) is approximately optimal (in the
sense explained at the end of Section 3) for K(8) in (29). It also yields an
estimate for §, the ratio estimate ' .

ey

This estimate § coincides with 8/ 6’, but the validity of (32) as unbiased for
K(8) holds even when the assumptions (26) do not. Note that for large samples,
the estimating function in (31) would approximate to that in (32) even regardless
of the assumption of ‘unbiased allocation’ mentioned above.

In the regression model (26) covariates x are assumed to be fixed. Suppose
we extend the model by letting x have a distribution. Then in the extended
model, the ‘approximate optimality’ of the estimating function (32) would hold
both conditionally on x and unconditionally. Altematively one can arrive at
the estimating function (32) directly from the unconditional model in which,
unconditionally, the expectations E(y;-6f(x;))=0 and -
E(y;-6'f(x))=0, with (y, Yix)i=1,...,N being assumed iid variates,
This model implies that for all individuals i,E(y;-3y,;)=0. Now again
assurning unbiased allocation of treatments, that is that the propensities
;=1/2, the elementary estimating functions for & are
{yizi=8y;(1~2z) };i=1,...,N. These are unbiased, that is have ‘0’
expectation, unconditionally (with respect to the joint distribution of all variates
including z). Hence the optimum estimating function (unconditionally in the
same sense) based on the data in (4) is given by (32). Of course this ‘optimality™

is in a more restricted class of estimating functions than the ‘approximate
optimality’ of (32), mentioned earlier. (Godambe and Thompson ([11], [12])).
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5. Estimating Functions : Constant Difference Case

Now consider the third special situation, where the superpopulation model
is such that if ©; and ; denote 6 (x;) and 6’ (x;) respectively, then

Oi—6’5=}', i=1,...,N
Here there is a single parameter of interest v, and a large number of unknown
" nuisance parameters contained in {8;,...,68y }. The development at the end
of the last section gives some clues to a possible approach.

Suppose that if (y;, ¥’ i=1,...,N, were observed, the population
estimating function for y suggested by the superpopulation model would be

N . . .
iM=Yc{y-yd-1) | (33)
=1 : )
Typically, ¢; would ‘be a function of the variances v (x;), v'(x;) and the
covariance ¢ (x;). We will concentrate on the estimation of y; the corresponding
finite population parameter would be = a0y -y’) of H3' where
a;=c;/ E_ ¢;. As was true for K (3) of (29), there is a combination of
elementary estimating functions with expectation j (y), namely
N ‘

z; 1-z2)
J(J'p---,yN',Y)=z Y] [.()’i"ei)_. - (}"i—Aeli) : ‘ €D)
Qa; 1-a

i=1 i

Tt is easy to see that
E(”yi,)"i’i=1,-~-»le)=j(y) .
but J has the drawback of depending on the 6; and 6’; other than through Y.
The same is true for its optimal sample estimating function

-

A Z; , , (1 _Zi)
J=Zci[(ya—9a)ﬁ—(y;—ei) ———] (35)

i€es ni(l—ai)

Conditions under which (35) is useful are fairly narrow, but sometimes
met with in practice. As for the estimation of  in Section 3, suppose we have
unbiased allocation of treatments, so that .

(X.i=%, i=l,...,N
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If we suppose further that

Gz G (1 - Zi) ' ‘
i§s . _i§s T O co
then
14 CiYizZ ¢y z) .
2 = Z LA _.z ; -7 C(S)
ies ies
, Ci .
=X 0~ @-(-z)) 37
ies !

If (36) is accomplished by pairing units with (approximately) equal values of
¢;/ m; and of 8; c;/m;, and by assigning the treatments T, T’ at random within
each pair, the last term of (37) is (approximately)\O. (For a design with m; all
€qual and c; all equal, we would be pairing units thought to have approximately
equal 6;.) Even otherwise, since the last term has expectation 0 conditional
on x, we might expect with largé samples to be able to neglect it. What is
left is an estimating function for Y which yields

C.V:Z c v 1_ . \ ‘
p=|y WUl _y a¥ilzz)|, o (38)
; LT W
1€8 1€ES

Even when the constant difference assumpﬁon itself is not justified, (3£§) is
approximately unbiased for the finite population quantity

N o - N
2 Goi-yDI Y e
i=1 i=1
Analogously to Section 3, here also one can start with the corresponding
‘unconditional model’ (that is with x varying), implying E yi—=Y;-7)=0, and
directly obtain optimal estimating functions (in the sense of the joint distribution
of all variates) for y.

6. Estimation of the Propensities
Now return to the stratification case of Section 2, where an estimate of
N .
A=.z (yi=yp/N
i=1

was proposed in a very general setting.
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If the propensities o are not constant in each stratum %, we have

II:I @, ) #0 in (21). To compute it we need values for the propensities. Now
. suppose the o; are not known. Then we might assume @; to be a function of
x; and t; where Xx; is the covariate in the superpopulation model and t; is an
additional variate outside the superpopulation model. One physical interpretation
might be that x; is the ‘size’ while t; is the ‘location’ of the individual i. For
simplicity suppose log { a;/ (1 - ;) y=ax; + bt;. That is,

exp (ax; + bt;)
o= p L aX; i (39)

1+ exp (ax; + bt;)
i=Al,...,N.Toestimateaandbonthebasisofzi,i=1,...,N,wehave

the eclementary  estimating equations  Z;— 0= 0, noting that
E(@z;-o)=0,i=1,..., N. Using (39), the population based optimal estimating
functions are given by

N N
(i—ai)(aai/aa)
)y - =Y @G-0)x; (40) -

2
=1 E(z;- ) i=1

N

=Y G- - (41)

i=1

N » .
(z; - @;) (90, / 9b)
E E (Zi - ai)z

i=1

The estimating equations for estimating a and b based on the survey data (4)
are obtained from (40) and (41) s

’ X; . t

Y @-0) —=0, Y @-a)—-=0 42)

. T . LT

1€ES 1€S )
where (xi.are as in (39) and w; are the design inclusion probabilities in (3)
(Godambe and Thompson [11]). As noted before, the derivation of equations
(42) from (40) and (41) provides a certain kind of protection if the model (39)
is not quite appropriate for all individuals i in the population 2. If this protection
is not considered important, onc can obtain possibly more efficient estimating
equations by deleting the inclusion probabilities 7t; in (42). This of course does
not make any difference for a simple random sampling design.

Now if (5, S) solve equations (42), the estimates &i are obtained by
replacing (a, b) by @, b) in (39). As we have seen before, apart from the case

when the propensities are constant within strata, H @, 67 in (21) will generally
be a function of the unknown propensities ¢;. This unknown function can be
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estimatedAby replacing the «; in it by their estimates &,-. Thus we obtain the
estimate A-in- (20), very generally,
Note that incorporation of the covariate t, on which y, y’ are assumed

not to depend, is important only for the estimation of the g (8, 6’) part of A,
and not for the estimation of the 8; and O’J-. Thus there is no reason to try to

incorporate t in the estimation other than through the &i.

7. Pair Matching

An illustration of some of the issues in the stratification case is provided
by an adaptation of one of the example of Rosenbaum and Rubin (7], namely
‘pair matching on balancing scores’. The propersity o; is a balancing score
in their sense if it is a function of covariates explicitly included in the model.
We will not assume this, but will nevertheless consider ‘pair matching on
propensities’ as they do. :

Since we will be matching on propensities, we imagine a discrete set of
propensity values ). The stratified population can be considered to be further

divided into PSUs (primary sampling units), the rth PSU consisting of
individuals with propensity value O¢) Suppose that the rth PSU has M,

individuals M, of which have z; = 0, and M;, of which have z;= 1. Rosenbaum

and Rubin describe a two-step sampling scheme which is close to the following :
Within each stratum %, select § of the PSUs with PSU inclusion probabilities

proportional to size; then in each selected PSU, randomly select one individual
i) for which z;=1, and one individual i for which z;=0. This is an instance

where the inclusion probability of an individual depends on its z value :
T, = §M/N; M,

and
o= M/ N'j M,

If we apply our analysis for the estimation of the parameter A of ), we
are led first to the following expression for fl in (19) :

fe0-yY N g L | M08 Mot -6y @3)
TN M (-0
, |

J

where §1; Tepresents the .sample PSU labels within the jth stratum.
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Now estlmate the finite populatmn parameter A as in (20) by
8+ﬁ(9 ), where 9 is given by (15), and ﬁ(e 9’) is ﬁ(e 0’). with 6;

and 9’ replaced by theu estimates, for example from (12)

It is mterestmg to note that in this example the arguments can be carried
thrOugh if we replace the propensnty A in H and A by its natural estimate

a(,) M,;/M,. This estimate would be obtained from the considerations in

Section 5 from a model like (39) where the covariates were the PSU indicators.
Equation (17) is still valid, conditionally on the values of M;, and M, for all

r. With this modified definition of H, whatever the estimates of 6; and 6';, in
(20) the estimate of A reduces to '

A N, _ _
A=Y § G- (44)
; .
where

YJ':% 2 Yi,

fESlj

and yJ is defined similarly. This is essenually the estimate suggested by

Rosenbaum and Rubin [17). Thus is the case of matched pairs, matched on
propensities, we can incorporate estimation of the propensities very naturally
at an early stage.

For an alternative justification of replacing o) by &(r) in H and ﬁ, note
that if we let g=A-6 - fi as before,

% _K, Ma 0, =6) Mo, =67
L0 o) (1-ag)*
where K, is constant, and
E a_ag_ -0
%)

Arguments similar to those given at the end of Section 3 can estabhsh
approximate optimality of the estimating function g evaluated at a(r) for large

population sizes N; and the sample sizes 5 j=1,...,k.
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8. Interval Estimation

Tests of the hypotheses of interest can be carried out in the usual manner
through confidence intervals for the parameters. For the stratification case with
large stratum sample sizes n;, the following methods of interval construction

should be helpful. In this section we will take the variates Z; to be independent
of one another.

First, for the model parameter 8;, j fixed, consider the estimating function

Zi
2 [ ;- ej);i ,

Its mean under the superpopulation model is 0, and its mean square, conditional
on x and z, is

PRI (49

i€s, 1
[

Thus an E-unbiased estimate of the mean square is obtained by replacing
v (x?) in the ith term of (45) by (y; —GJ-)Z. Assuming approximate normality

under the model (or perhaps the model and sampling design combined) suggests
_ constructing an interval by inverting :

E (Gi-6)z/m)
'IESj _
T =1z o
\/Zﬁ(yi—e,-)z |

. A
IES’

(46)

where z,_,, is the appropriate N(0,1) percentage point. This leads to a
quadratic equation in 8; to solve for the interval end points. (See Bigder and
Patak’ [2]). Alternatively, we could invert (46) with 8; replaced by 9; in the
denominator.

Intervals for 6, j fixed, can be obtained similarly.

Second, suppose the parameter of interest is.
k .
© =Y N;®-0;)/N ‘
j=1
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In a sense, all but one of the individual 6; and 8, j=1,..., k are now nuisance

parameters, and an argument akin to one proposed by Binder and Patak 2]
(see also Godambe [9]) suggests the use of approximate normality for the pivot

A .
N©-6) -
F ((N N (1-z) v “
. . z. . A 2 — zi
s >:<yi—6,->2—;+[ ]zm-ep
j=ll[ﬁ—':lr'1esj La N_;I: ies 11.'?
A ) A
where NJT =. z Zi/ ﬂ:i, va-[v = z (l - Zi)./“’ti
ie §; ie 5
Note that (47) is consistent with the pivot in (46), since
‘ 4
A N: Z; N. , , (1 "zi) i
N@©-6)=2 i(f;;z l(yi_ej) E]'K{LZ [(Yi‘ej)_ ;
j=1 ies Wies
Finally, consider the finite population parameter
N
A=Y (y-yD/N
i=1
A
If A is given by (22), then
A ’ x [k
A-A={ TIY AL 0;-8)+ 2 By (vi—8))
j=1lie 5 i€s;
. )
k .
I @-e-2oi-ep{|/N (48)
i=1jeP ieP ,
where
Zi
o
ot et N
o T NT NjT
2- Zi)
'ﬂi (1 - ai)

(1-z) (A-2)|ies

N;
B, = - . A} - ﬁJ_
15 Tti (1 d (1.,) . ‘TCi NJ"IV JT'
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For a large_ population the first terms in (48) will dominate, and intervals and
tests for A might be based on approximate normality for :

. A

. - ,A_A . (49)
R

N* i=1 ies, i=1 ieg

where Oj and Q’J- are sample based ’estimates of E{(yi—ej)zlx) and

E{(;- G'J-)2 Ix }, i € B, respectively.

9. Confounding

A closer look at the pair matching design discussed in Section 7 suggests
some interesting relationships among the basic ideas of randomization, optimal
estimating functions, ignorability of treatment assignments (see Section 1) and

the related concept of confounding.

Consider a rather extreme case of confounding, namely where the
propensities ¢; in (1) are functions of Y; Y';s so that

=05 (y, Yy, i=1,...,N (50

Under the dependence of o; on (y;, y’;) as in (50), the assumption of ignorability
of treatment assignments is no longer valid. As often the propensities o; will

be unknown, but here we will continue with the assumption made in Section 7,
that- the o; take only discrete values, and that individuals i with a common

value of the propensity o can be identified.

Now suppose (50) holds, and therefore that the assumption of ‘no
confounding’ is not true, yet 0 < a;<1,i=1,..., N. Then some of the previous
results still hold. In (43) the design expectation E (ﬁ)=H; further, for large
N, H=A-0 as in (18). Obviously, also, the substitution of the unknown
Q) by its estimate M,, /M, is still natural. To this extent the estimation of
A given by (44) is justified even under. a possible confounding such as (50).
However, in what follows one will see that the estimating function fl in (43),
unlike the corresponding one in (19), is not optimal for H.

In fact, this is partly because the underlying sampling design depends on
the treatment allocation vector z. Before demonstrating this, however, we briefly
discuss the significance of ‘optimality’ in the present context.

For a general survey sampling setup, a definition of optimal estimating
function is given by Godambe and Thompson [11]. Suppose that according to
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this definition, in the class of all design unbiased estimating functions for H
a candidate for the ‘optimal’ one is given by fI. A sufficient eondition for
this optimality is that if any estimating function 8 =8 { (i,y;), i s, 6, 6" } has
design expectation zero, then & is uncorrelated with fi, with respect to the
sampling design and the underlying superpopulation semiparametric model. That -
is, the estimating function H mimics for a semiparametric model an important
property of a complete sufficient statistic for a parametric model, namely that
the statistic is independent of every ancillary statistic, (Godambe [8],
Lehman [15]). In this sense the estimation based on the optimal estimating
function may be said to be utilizing all the information in the sample.

To study the conditions under which the correlation E E(5)=0, we note
from (19) that _

A v y; — 0 yi— ‘. .

H=) ;’ where y; = 'a.iz- - l—a~J (1-2)

1 1 1

i€s

Hence, using E (8) =0, we have

LY elny (5

'ssigs

N
EEMH)ly,y)=-)3 E

i=1

where p is the probability of sample s as in (2). Now if in (51) the z; are
independent and the sampling design p is independent (i) of the treatment

- allocation vector z and (ii) of the response vectors (y,y’), EE(H3)=0.
Otherwise in general EE@§)#0. Apart from the ‘pair matching’ design
discussed in Section 7, and the paired unbiased allocation designs of Sections 4
and 5, all the conditions above are satisfied for the examples considered in
this paper. For the pair matching design, however, neither of the conditions
(i) or (ii) is satisfied. ' .

. It is interesting to note that in the present case, estimation for A similar
to one given by (44) can be obtained by a sampling design satisfying conditions
(i) and (ii) above. This estimation is ‘optimal’, however, only for large samples,
or in other words asymptotically.

Consider a stratified simple random sampling design with strata as in
Section 7 and stratum sample sizes Isj| =n;, j=1,...,k, s =Us; as before being

the total sample. Now let
sj(l')z {i: iESJ' and Q;= a(r) IR | Sj(r) = “jr

where o are the same as in Section 7. Then
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n
N, (52)

Further if thg sample sizes n; are large compared to the distinct number of
propensities and if the number of individuals i in ;) with z;= 1 is '), the
natural estimate of a(r) is given by &(r)= n'j(r)/ Dj(r). Substltutlng &(r) for (X.(r)

in (52) we have
~ _ 1 , , » —nj-
H=3 2 Y 0 {Cjn=9 - Gin-979}/ (NJ (53)
i o '
where y;qy is the mean of all y; forie s i) having z; —1 and y’
similarly. From (53) we have

A_l R y’l _l
D !

j (@i i€, )

ir) is defined

~ 1 ¢ N < o 1 .

H=5 X LY g Gip-Vie) -y 2 N©-6)
i 1o i

providing the estimate of A as

1 N; -,
B=9 27 2% U~ Yie? (59
i 4o

It is interesting to compare the two estimates of A, one gives by A in_

(44) and the other A in (54). For large samples the estimate X is approximately
optimal regardiess of the assumption of ‘no confounding’. Though no such
optimality is available for the estimate X, it seems natural, granting no
confoundmg, to pool together estimates yj(,) correspondmg to different values -

of the propensmes o) to get what possnbly is a more efficient estimate of
(©)

A, namely A Perhaps the difference A-Zcan provide a test statistic for testing
the hypothesis of ‘no confounding’. Yet a more duect test of ‘confounding’
is provided as follows.

Under ~the =~ assumption of po  confounding we  have
E(y)= E(y D= 6’ for the individual ie ®. However, if there is
onfoundmg as given by “(50), then for a oy E(y) =86, and
E (y i) = 0’y where 8, and 6’ are determined by the underlying model and
). Here no confounding would be expressed by the null hypothesis,

Ho (l')'_ : G'J(r) = G’J for auJ andr
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Further, if under the null hypothesis and the model with o;= 0,y fixed the
variates (y;, y’;) are independent and normally distributed with known variances

%, the likelihood ratio test for Hy is given by
1 | , o2 0 =Ny o a2 |
? " zr: {0y Gy~ + 00 VoY T =X (23 (-1)

(35)

n}’(r) being 1y — Ij¢ry- If in (55) the variance o” is unknown and to be estimated,
we can construct an F test in the usual manner.

It is interesting to compare the estimates of A given by (23), (44) and
(54), in conjunction with their corresponding sampling designs. Underlying (23),
in the context of simple random sampling, is the assumption that the propensities
depend exclusively on the covariates, and as a result, in (21) f1=0. Thus from
(20), A= 6. That is, the estimate (23) of A is obtained indirectly from the
estimate ®. On the other hand the estimates in (44) and (54), in their respective
contexts of pair matching and a kind of post stratification on propensity
classes, do not require estimation.of © at all : in (19),

f1(0,6) = [estimate (44) or (54)] — ©

which with (18) provides directly the. corresponding estimate of A. Thus
estimation in (44) and (54) is less dependent on the superpopulation model of
Section 1 then is the estimation in (23). Particularly, the ‘variance’ assumption
of the superpopulation model, which plays a crucial role in the estimation of
© by @, is not required for derivation of estimates (44) and (54). Also, unlike
the ‘derivation of (23), the derivations of (44) and (54) do not require the
assumption that the propensities are uniquely determined by the covariates. In
this sense the properties of the estimates (44), (54) are more robust than those
of the estimate i (23). Of course when the above mentioned . ‘assumptions’
are satisfied the estimate (23) will be more efficient than that given by (54);
it will actually be approximately optimal. However, the asymptotic optimality
of the estimate (54), in a smaller class than that with which (23) is compared,
is insensitive to some departures from the assumption of ‘no confounding’, as
discussed in the preceding paragraphs. This in some situations could be the
crucial point in support of the strategy leading to the estimate (54).
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